Contextual Recommendation

نویسندگان

  • Sarabjot S. Anand
  • Bamshad Mobasher
چکیده

The role of context in our daily interaction with our environment has been studied in psychology, linguistics, artificial intelligence, information retrieval, and more recently, in pervasive/ubiquitous computing. However, context has been largely ignored in research into recommender systems specifically and personalization in general. In this paper we describe how context can be brought to bear on recommender systems. As a means for achieving this, we propose a fundamental shift in terms of how we model a user within a recommendation system: inspired by models of human memory developed in psychology, we distinguish between a user’s short term and long term memories, define a recommendation process that uses these two memories, using context-based retrieval cues to retrieve relevant preference information from long term memory and use it in conjunction with the information stored in short term memory for generating recommendations. We also describe implementations of recommender systems and personalization solutions based on this framework and show how this results in an increase in recommendation quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recommendation Based on Contextual Opinions

Context has been recognized as an important factor in constructing personalized recommender systems. However, most contextaware recommendation techniques mainly aim at exploiting item-level contextual information for modeling users’ preferences, while few works attempt to detect more fine-grained aspect-level contextual preferences. Therefore, in this article, we propose a contextual recommenda...

متن کامل

Similarity-Based Context-Aware Recommendation

Context-aware recommender systems (CARS) take context into consideration when modeling user preferences. There are two general ways to integrate context with recommendation: contextual filtering and contextual modeling. Currently, the most effective context-aware recommendation algorithms are based on a contextual modeling approach that estimate deviations in ratings across different contexts. ...

متن کامل

Contextual recommender systems using a multidimensional approach

Recommender systems use the past experiences and preferences of the target users as a basis to provide personalized recommendations for them and as the same time, solve the information overloading problem. Context as the dynamic information describing the situation of items and users and affecting the user’s decision process is essential to be used by recommender systems. Multidimensional appro...

متن کامل

Movie Recommendation using Random Walks over the Contextual Graph

Recommender systems have become an essential tool in fighting information overload. However, the majority of recommendation algorithms focus only on using ratings information, while disregarding information about the context of the recommendation process. We present ContextWalk, a recommendation algorithm that makes it easy to include different types of contextual information. It models the bro...

متن کامل

Differential Context Relaxation for Context-Aware Travel Recommendation

Context-aware recommendation (CARS) has been shown to be an effective approach to recommendation in a number of domains. However, the problem of identifying appropriate contextual variables remains: using too many contextual variables risks a drastic increase in dimensionality and a loss of accuracy in recommendation. In this paper, we propose a novel treatment of context – identifying influent...

متن کامل

Interpreting Contextual Effects By Contextual Modeling In Recommender Systems

Recommender systems have been widely applied to assist user’s decision making by providing a list of personalized item recommendations. Context-aware recommender systems (CARS) additionally take context information into considering in the recommendation process, since user’s tastes on the items may vary from contexts to contexts. Several context-aware recommendation algorithms have been propose...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006